2 min read
AI Governance: Lessons from Two Decades of Data Mistakes
Twenty years ago, companies were racing to digitize customer data. CRM systems, analytics platforms and e-commerce exploded. Governance was an...
Hier finden Sie weitere spannende Links und die Möglichkeit mit uns in Kontakt zu treten.
Beginnen Sie mit der schnellen Analyse. Diese Services liefern Ihnen die strategische Standortbestimmung und eine klare To-Do-Liste, um Risiken sofort zu managen.
Übersetzen Sie Regulierung in praktikable Prozesse. Aufbau des Governance-Fundaments, Implementierung klarer Rollen und die dauerhafte Absicherung.
Sichern Sie den Erfolg durch interne Kompetenz. Unsere Trainings befähigen Ihre Teams, Governance direkt in Code und Prozesse umzusetzen.
Dieser Bereich dient als zentrale Quelle für fundierte Analysen und praxisnahe Frameworks. Greifen Sie auf unser dokumentiertes Wissen zu, um regulatorische Komplexität zu durchdringen, strategische Risiken zu managen und Compliance-Anforderungen effizient in Ihre Organisation zu implementieren.
1 min read
David Klemme
:
Sep 10, 2025 3:44:37 PM
KPMG recently unveiled a “TaxBot” powered by a 100-page prompt to generate draft tax advice in a single day. On paper, that looks impressive. In practice, it’s a design flaw:
Impossible to debug when outputs go wrong,
Un-traceable — no one can pinpoint which part of the prompt drives which answer,
Un-explainable — outputs can’t be justified to regulators or clients,
Risky — in a high-stakes domain where a single mistake can cost millions.
This case is not about one firm. It highlights a broader temptation: to solve complexity with more text rather than with better design.
And that’s exactly where the EU AI Act comes in. High-risk systems like tax advice will require:
Transparency → you must know how outputs are generated.
Explainability → you must justify results to regulators, auditors, and clients.
Governance → you must demonstrate controls, versioning, and oversight.
A monolithic 100-page prompt fails on every front. It is unmanageable by design.
So what does work? We see three key principles:
Modular design — smaller, auditable components instead of giant blocks of text.
Tractability — every output should be traceable back to a rule, dataset, or prompt section.
Human oversight — accountability must stay with professionals, not hidden inside a black box.
The lesson? Less is more. Effective AI isn’t built on endless prompt pages, but on structures that scale: governance, monitoring, and explainability.
Because in the real world, complexity doesn’t scale. It breaks.
2 min read
Twenty years ago, companies were racing to digitize customer data. CRM systems, analytics platforms and e-commerce exploded. Governance was an...
5 min read
We’ve spent months pondering what “human-in-the-loop” really means in the wild; actual production workflows that have customer impact. What I keep...
5 min read
The recent MIT-NANDA report, "The GenAI Divide: State of AI in Business 2025," has echoed loudly across boardrooms and tech forums, warning that a...